MARK SCHEME for the May/June 2015 series

4037 ADDITIONAL MATHEMATICS

4037/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	$k^{2} - 4(2k+5) (<0)$ $k^{2} - 8k - 20 (<0)$ $(k-10)(k+2) (<0)$ critical values of 10 and -2 $-2 < k < 10$	M1 M1 A1 A1	use of $b^2 - 4ac$, (not as part of quadratic formula unless isolated at a later stage) with correct values for <i>a</i> , <i>b</i> and <i>c</i> Do not need to see < at this point attempt to obtain critical values correct critical values correct range
	Alternative 1:		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(2k+5)x+k$	M1	attempt to differentiate, equate to zero and substitute x value back in to obtain a y value
	When $\frac{dy}{dx} = 0$, $x = \frac{-k}{2(2k+5)}$, $y = \frac{8k+20-k^2}{4(2k+5)}$	M1	consider $y = 0$ in order to obtain critical values
	When $y = 0$, obtain critical values of 10 and -2 -2 < k < 10	A1 A1	correct critical values correct range
	Alternative 2:		
	$y = (2k+5)\left(\left(x+\frac{k}{2(2k+5)}\right)^2 - \frac{k^2}{4(2k+5)}\right) + 1$	M1	attempt to complete the square and consider '1 $-\frac{k^2}{4(2k+5)}$ '
	Looking at $1 - \frac{k^2}{4(2k+5)} = 0$ leads to	M1	attempt to solve above = to 0, to obtain critical values $(1, 1)^{2}$
	critical values of 10 and -2 -2 < k < 10	A1	correct critical values
		A1	correct range

	Page 3	Mark Scheme		Syllabus Paper
		Cambridge O Level – May/June 201	15	4037 12
2		$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}}$	M1	for $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\cot \theta = \frac{\cos \theta}{\sin \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$; allow when used
		$=\frac{\frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta}}{\frac{1}{\sin\theta}}$	M1	dealing correctly with fractions in the numerator; allow when seen
		$=\frac{1}{\cos\theta}$	M1	use of the appropriate identity; allow when seen
		$= \sec \theta$	A1	must be convinced it is from completely correct work (beware missing brackets)
		Alternative: $\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\tan^2\theta + 1}{\tan\theta}}{\csc\theta}$	M1	for either $\tan \theta = \frac{1}{\cot \theta}$ or $\cot \theta = \frac{1}{\tan \theta}$ and
		$=\frac{\sec^2\theta}{\tan\theta\frac{1}{\sin\theta}}$	M1	$\csc \theta = \frac{1}{\sin \theta}$; allow when used dealing correctly with fractions in numerator; allow when seen
		$=\frac{\sec^2\theta}{\sec\theta}$ $=\sec\theta$	M1 A1	use of the appropriate identity; allow when seen must be convinced it is from
				completely correct work
3		$\mathbf{A}^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix}$ $\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} 8 \\ 9 \end{pmatrix}$	B1 B1 M1	$\frac{1}{2}$ multiplied by a matrix for matrix attempt to use the inverse matrix,
		$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 6 \\ -4 \end{pmatrix} $ x = 3, y = -2		must be pre-multiplication
		x = 3, y = -2	A1, A1	

	Page 4 Mark Scheme			Syllabus Paper	
		Cambridge O Level – May/June 2015		4037 12	
4	(i)	Area = $\left(\frac{1}{2} \times 12^2 \times 1.7\right) + \left(\frac{1}{2} \times 12^2 \sin(2\pi - 1.7 - 2.4)\right)$	B1,B1	B1 for sector area, allow unsimplified B1 for correct angle <i>BOC</i> , allow unsimplified correct attempt at area of triangle, allow unsimplified using <i>their</i> angle <i>BOC</i> (Their angle <i>BOC</i> must not be 1.7 or 2.4) correct attempt at <i>BC</i> , may be seen	
	(ii)	= awrt 181 $BC^2 = 12^2 + 12^2 - (2 \times 12 \times 12 \cos 2.1832)$	A1 M1		
	(11)	or $BC = 2 \times 12 \times \sin\left(\frac{2\pi - 4.1}{2}\right)$		in (i), allow if used in (ii). Allow use of <i>their</i> angle <i>BOC</i> .	
		<i>BC</i> = 21.296	A1		
		Perimeter = $(12 \times 1.7) + 12 + 12 + 21.296$	B1 M1	for arc length, allow unsimplified for a correct 'plan'	
		= 65.7	A1	(an arc $+ 2$ radii and <i>BC</i>)	
5	(a) (i)	20160	B1		
	(ii)	$3 \times {}^{6}P_{4} \times 2$ = 2160	B1,B1	B1 for ${}^{6}P_{4}$ (must be seen in a product) B1 for all correct, with no further working	
	(iii)	$5 \times 2 \times {}^{6}P_{4}$ = 3600 Alternative 1:	B1,B1 B1	B1 for ${}^{6}P_{4}$ (must be seen in a product) B1 for 5 (must be in a product) B1 for all correct, with no further working	
		${}^{6}C_{4} \times 5! \times 2$	B2	for ${}^{6}C_{4} \times 5!$	
		= 3600	B1	for ${}^6C_4 \times 5! \times 2$	
		Alternative 2: $\binom{7}{P_{5}-{}^{6}P_{5}} \times 2$ = 3600	B2 B1	for $({}^7P_5 - {}^6P_5)$ for $({}^7P_5 - {}^6P_5) \times 2$	
		Alternative 3: $2! ({}^{6}P_{4} + ({}^{6}P_{1} \times {}^{5}P_{3}) + ({}^{6}P_{2} \times {}^{4}P_{2}) + ({}^{6}P_{3} \times {}^{3}P_{1}) + {}^{6}P_{4})$	B2	4 terms correct or omission of 2! in	
		= 3600	B2 B1	4 terms correct or omission of 2! in each term all correct	

	Page 5			Syllabus Paper
		Cambridge O Level – May/June 20 ⁻	4037 12	
	(b) (i)	$^{14}C_4 \times ^{10}C_4$ or $^{14}C_8 \times ^8C_4$ (or numerical or factorial equivalent) = 210210	B1,B1	B1 for either ${}^{14}C_4$ or ${}^{14}C_8$ as part of a product B1 for correct answer, with no further working
	(ii)	${}^{8}C_{4} \times {}^{6}C_{4}$ $= 1050$	B1,B1	B1 for either ${}^{8}C_{4}$ or ${}^{6}C_{4}$ as part of a product B1 for correct answer with no further working
6	(i)	10ln4 or 13.9 or better	B1	
	(ii)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = \frac{20t}{t^2 + 4} - 4$	M1 B1	attempt to differentiate and equate to zero $\frac{20t}{t^2 + 4}$ or equivalent seen
		When $\frac{dx}{dt} = 0, \frac{20t}{t^2 + 4} = 4$	DM1	attempt to solve <i>their</i> $\frac{dx}{dt} = 0$, must be a 2 or 3 term quadratic equation
		leading to $t^{2} - 5t + 4 = 0$ t = 1, t = 4	A1	with real roots for both

P	ag	е	6

Mark SchemeSyCambridge O Level – May/June 20154

SyllabusPaper403712

(iii)	If $(v =) \frac{20t}{t^2 + 4} - 4$		
	$(a=) \frac{20(t^2+4)-20t(2t)}{(t^2+4)^2}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
		A1 A1	$20(t^2+4)$ $20t(2t)$
	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$ or equivalent	A1	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$
	expression involving $-t^2$ When acceleration is 0, $t = 2$ only	B1	t = 2, dependent on obtaining first and second A marks
	Alternative 1 for first 3 marks:		
	If $(v =) \frac{20t - 4t^2 - 16}{t^2 + 4}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
	$(a=)\frac{(t^2+4)(20-8t)-(20t-4t^2-16)(2t)}{(t^2+4)^2}$	A1 A1	for $(t^2 + 4)(20 - 8t)$ for $(20t - 4t^2 - 16)(2t)$
	(l^{+4}) Alternative 2 for M1 mark:		
	Alternative 2 for MT mark: If $(v =) 20t(t^2 + 4)^{-1} - 4$ $(a =) 20t(-2t(t^2 + 4)^{-2}) + 20(t^2 + 4)^{-1}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
	Alternative 3 for the first 3 marks If $(v =) (20t - 4t^2 - 16)(t^2 + 4)^{-1}$ $(a =)(20t - 4t^2 - 16)(-2t(t^2 + 4)^{-2}) + (20 - 8t)(t^2 + 4)^{-1}$ Numerator $= -2t(20t - 4t^2 - 16) + (20 - 8t)(t^2 + 4)$	M1 A1 A1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$ for $2t(20t - 4t^2 - 15)$ for $(20 - 8t)(t^2 + 4)$
7 (i)	$\overrightarrow{DA} = 3\mathbf{a} - \mathbf{b}$	B1	mark final answer, allow unsimplified
(ii)	$\overrightarrow{DB} = 7\mathbf{a} - \mathbf{b}$	B1	mark final answer, allow unsimplified
(iii)	$\overrightarrow{AX} = \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	B1	mark final answer, allow unsimplified
(iv)	$\overrightarrow{DX} = 3\mathbf{a} - \mathbf{b} + \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	M1 A1	<i>their</i> (i) + <i>their</i> (iii) or equivalent valid method or $3\mathbf{a} - \mathbf{b} + their$ (iii) Allow unsimplified
		111	

Page 7	Mark Scheme		Syllabus	Paper	
	Cambridge O Level – May/June 20	15	4037	12	
(v)	$3\mathbf{a} - \mathbf{b} + \lambda (4\mathbf{a} + \mathbf{b}) = \mu (7\mathbf{a} - \mathbf{b})$ Equate like vectors: $3 + 4\lambda = 7\mu$ $-1 + \lambda = -\mu$ leads to $\lambda = \frac{4}{11}, \ \mu = \frac{7}{11}$	M1 DM1 A1,A1	equating <i>their</i> (iv) and $\mu \times their$ (ii) for an attempt to equate like vectors and attempt to solve 2 linear equations for λ and μ A1 for each		
8 (i)	$5e^{2x} - \frac{1}{2}e^{-2k} (+c)$	B1, B1	B1 for each term, allow unsimplified		
(ii)	$\left(5e^{2k} - \frac{1}{2}e^{-2k}\right) - \left(5e^{-2k} - \frac{1}{2}e^{2k}\right)$	M1 A1	use of limits provid has taken place. Sig correct if brackets a allow any correct fo	gns must be re not included	
(iii)	$\left(5e^{2k} - \frac{1}{2}e^{-2k}\right) \left(5e^{-2k} - \frac{1}{2}e^{2k}\right) = -60$ or $\frac{11}{2}e^{2k} - \frac{11}{2}e^{-2k} = -60$	B1	correct expression f simplified or unsim to – 60, must be firs	plified equated	
	or equivalent leading to $11e^{2k} - 11e^{-2k} + 120 = 0$	DB1	must be convinced a	as AG	
(iv)	$11y^{2} + 120y - 11 = 0$ (11y - 1)(y + 11) = 0 leading to $k = \frac{1}{2} \ln \frac{1}{11}, \ \ln \frac{1}{\sqrt{11}}, \ -\ln \sqrt{11}, -\frac{1}{2} \ln 11$	M1 DM1 A1	attempt to obtain a d equation in y or e^{2k} get y or e^{2k} (only n solution) attempt to deal with any of given answer	and solve to eed positive e to get $k =$.	

	Page 8				
		Cambridge O Level – May/June 20	4037 12		
9		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 6\sin 2x$	M1,A1	M1 for attempt to differentiate A1 for all correct	
		When $x = \frac{\pi}{4}$, $y = \pi$	B1	for <i>y</i>	
		$\frac{dy}{dx} = -2$ so gradient of normal $= \frac{1}{2}$	DM1	for substitution of $x = \frac{\pi}{4}$ into <i>their</i>	
				$\frac{dy}{dx}$ and use of $m_1m_2 = -1'$, dependent on first M1	
		Normal equation $y - \pi = \frac{1}{2} \left(x - \frac{\pi}{4} \right)$	DM1	correct attempt to obtain the equation of the normal, dependent on previous DM mark	
		When $x = 0, \ y = \frac{7\pi}{8}$	A1	must be terms of π	
		When $y = 0, x = -\frac{7\pi}{4}$	A1	must be terms of π	
		Area = $\frac{1}{2} \times \frac{7\pi}{4} \times \frac{7\pi}{8} = \frac{49\pi^2}{64}$	B1ft	Follow through on <i>their x</i> and <i>y</i> intercepts; must be exact values	
10	(a)	$\cos^2 3x = \frac{1}{2}$, $\cos 3x = (\pm)\frac{1}{\sqrt{2}}$			
10	(<i>a</i>)	$\frac{2}{3x} = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$	M1	complete correct method, dealing	
		$x = 15^{\circ}, 45^{\circ}, 75^{\circ}, 105^{\circ}$	A1,A1	with sec and 3, correctly A1 for each correct pair	
	(b)	$3(\cot^{2} y + 1) + 5 \cot y - 5 = 0$ Leading to $3 \cot^{2} y + 5 \cot y - 2 = 0 \text{ or}$	M1	use of a correct identity to get an equation in terms of one trig ratio only	
		$2\tan^2 y - 5\tan y - 3 = 0$	M1	for $\cot y = \frac{1}{\tan y}$ to obtain either a	
		$(3 \cot y - 1)(\cot y + 2) = 0$ or $(\tan y - 3)(2 \tan y + 1) = 0$		tan y quadratic equation in tan y or solutions in terms of tan y; allow where appropriate	
		$\tan y = 3, \qquad \tan y = \frac{1}{2}$	M1	for solution of a quadratic equation in terms of either $\tan y$ or $\cot y$	
		<i>y</i> = 71.6°, 251.6° 153.4°, 333.4°	A1,A1	A1 for each correct 'pair'	
	(c)	$\sin\left(z+\frac{\pi}{3}\right) = \frac{1}{2}$	M1	completely correct method of solution	
		$z + \frac{\pi}{3} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}$	A1	one correct solution in range	
		$z = \frac{\pi}{2}, \frac{11\pi}{6}$	M1	correct attempt to obtain a second solution within the range	
		(allow 1.57, 5.76)	A1	second correct solution (and no other)	